- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cummings, Rachel (1)
-
Kishore, Varsha (1)
-
Krehbiel, Sara (1)
-
Lovelace, Justin (1)
-
Mei, Yajun (1)
-
Shekhtman, Eliot (1)
-
Tuo, Rei (1)
-
Wan, Chao (1)
-
Weinberger, Kilian Q. (1)
-
Zhang, Wanrong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Hardt, Moritz (2)
-
Globerson, Amir (1)
-
Levine, Sergey (1)
-
Naumann, Tristan (1)
-
Oh, Alice (1)
-
Saenko, Kate (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hardt, Moritz (Ed.)The change-point detection problem seeks to identify distributional changes at an unknown change-point k^∗ in a stream of data. This problem appears in many important practical settings involving personal data, including biosurveillance, fault detection, finance, signal detection, and security systems. The field of differential privacy offers data analysis tools that provide powerful worst-case privacy guarantees. We study the statistical problem of change-point detection through the lens of differential privacy. We give private algorithms for both online and offline change-point detection, analyze these algorithms theoretically, and provide empirical validation of our results.more » « less
-
Lovelace, Justin; Kishore, Varsha; Wan, Chao; Shekhtman, Eliot; Weinberger, Kilian Q. (, Advances in neural information processing systems)Oh, Alice; Naumann, Tristan; Globerson, Amir; Saenko, Kate; Hardt, Moritz; Levine, Sergey (Ed.)Diffusion models have achieved great success in modeling continuous data modalities such as images, audio, and video, but have seen limited use in discrete domains such as language. Recent attempts to adapt diffusion to language have presented diffusion as an alternative to existing pretrained language models. We view diffusion and existing language models as complementary. We demonstrate that encoder-decoder language models can be utilized to efficiently learn high-quality language autoencoders. We then demonstrate that continuous diffusion models can be learned in the latent space of the language autoencoder, enabling us to sample continuous latent representations that can be decoded into natural language with the pretrained decoder. We validate the effectiveness of our approach for unconditional, class-conditional, and sequence-to-sequence language generation. We demonstrate across multiple diverse data sets that our latent language diffusion models are significantly more effective than previous diffusion language models. Our code is available at https://github.com/justinlovelace/latent-diffusion-for-language .more » « less
An official website of the United States government

Full Text Available